
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

1 Instructor: Daniel Llamocca

Unit 2 - Digital System Design

COMPONENTS: FSM (CONTROL) + DATAPATH CIRCUIT

FINITE STATE MACHINES (FSMS)
▪ For a review of this topic in detail, please refer to

ECE2700 – Synchronous Sequential Circuits.

▪ State Machine representation: we will use the

Algorithmic State Machine (ASM) Charts.

▪ Example: Sequence detector. It generates z=1

when it detects the sequence 01101. Once the

sequence is detected, it looks for a new sequence.

✓ Finite State Machine:
This is a Mealy FSM.

2 representations:
 Bubble Form
 ASM Chart

✓ Video: convert bubble form into ASM (also: VHDL coding of ASM).

FINITE STATE
MACHINE

resetn

clock

Inputs

Outputs

CONTROL CIRCUIT

DATAPATH CIRCUIT

S1 S2
0/0

resetn=0

x/z

S3
1/0

1/0

S4S5

0

1/0

0/0

01

0110110 0/0
1/1

0/0

1/0

0/0

S1

resetn=0

0

x
1

S2

1

x
0

S3

1

x
0

S4

0

x
1

S5

x
10

z  1

Combinational
Circuit

Flip Flops
Combinational

CircuitIn
p
u
ts

Q

clock

resetn

Only for Mealy Machine

O
u
tp

u
ts

S
ta

te
s

0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0

FINITE STATE
MACHINE

resetn

clock

x z
x

z

http://www.secs.oakland.edu/~llamocca/Courses/ECE2700/Notes%20-%20Unit%206.pdf
https://youtu.be/UheK5V_mGLQ

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

2 Instructor: Daniel Llamocca

✓ Timing diagram: Sequence detector – 01101.

Note: The output z can change as soon as the input x changes.

▪ Example: This is a more complex FSM (Mealy-type). Given the VHDL code, we complete the FSM diagram, the timing

diagram and provide the state table, excitation table, excitation table, and circuit implementation.

library ieee;

use ieee.std_logic_1164.all;

entity myfsm is

 port (clk, resetn: in std_logic;

 r, p: in std_logic;

 x, w, z: out std_logic);

end myfsm;

architecture behavioral of myfsm is

 type state is (S1, S2, S3);

 signal y: state;

begin

 Transitions: process (resetn, clk, r, p)

 begin

 if resetn = '0' then y <= S1;

 elsif (clk'event and clk = '1') then

 case y is

 when S1 =>

 if r = ‘1’ then y <= S2;

 else

 if p = ‘1’ then y <= S3; else y <= S1; end if;

 end if;

 when S2 =>

 if p = '1' then y <= S1; else y <= S3; end if;

 when S3 =>

 if p = '1' then y <= S3; else y <= S2; end if;

 end case;

 end if;

 end process;

 Outputs: process (y, r, p)

 begin

 x <= ‘0’; w <= ‘0’; z <= ‘0’;

 case y is

 when S1 => if r = ‘0’ then

 if p = ‘0’ then z <= ‘1’; end if;

 end if;

 when S2 => if r = ‘0’ then x <= ‘1’; end if;

 if p = ‘0’ then w <= ‘1’; end if;

 when S3 => if p = ‘0’ then x <= ‘1’; end if;

 end case;

 end process;

end behavioral;

✓ Timing Diagram: Note that the outputs x, w, z can change as soon as the input x changes.

S1

clock

resetn

z

state S1

x

S1 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4

S1 S1 S2 S1 S1 S1 S3 S3 S3 S2 S3 S3 S2 S1 S2 S3 S2 S1 S3

clk

resetn

r

p

y(state)

x

w

z

S1

1

resetn=0

r
0

S2
1

p
0

z  1

S3

rx  1

p

w  1

p

x  1

1 0

10

01

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

3 Instructor: Daniel Llamocca

✓ State Table and Excitation Table:

State Assignment:
S1: Q=00, S2: Q=01, S3: Q=10

✓ Excitation equations and Boolean output equations:

𝑄1(𝑡 + 1) ← 𝑟̅𝑝𝑄0(𝑡)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝑄1(𝑡) + 𝑝̅𝑄0(𝑡)

𝑄0(𝑡 + 1) ← 𝑟𝑄1(𝑡)̅̅ ̅̅ ̅̅ ̅ 𝑄0(𝑡)̅̅ ̅̅ ̅̅ ̅ + 𝑝̅𝑄1(𝑡)

𝑥 = 𝑝̅𝑄1(𝑡) + 𝑟̅𝑄0(𝑡) 𝑤 = 𝑝̅𝑄0(𝑡) 𝑧 = 𝑟̅𝑝̅𝑄1(𝑡)̅̅ ̅̅ ̅̅ ̅ 𝑄0(𝑡)̅̅ ̅̅ ̅̅ ̅

✓ Circuit implementation:

Note that we highlight the
components of the FSM model.

Also, refer to the VHDL for

FPGAs tutorial – Unit 6 on

how the VHDL code maps
into the circuit components.

DATAPATH CIRCUIT
▪ The components required here vary widely and depend on your specific application. Typical components found include

arithmetic circuits, special encoders/decoders, counters, registers, shift registers, etc.

DIGITAL SYSTEM DESIGN
▪ Usually, you start with the specifications of your circuit. Then, you define the I/Os. After this, it is up to you to decide on

what components to use, how to interconnect them, and how to control it via a FSM.

VHDL CODING

Refer to VHDL for FPGAs Tutorial for a complete tutorial on VHDL design that includes slides and examples (VHDL code). For

the description of digital systems in VHDL, the following concepts are of utmost importance:

▪ FSM Description: VHDL coding of ASMs:

✓ VHDL on FPGA Tutorial – Unit 6 slides: How to write VHDL code for FSMs.

✓ Video: VHDL description for ASM chart (sequence detector 01101), synthesis and simulation in Vivado.

▪ Interconnection of components: hierarchical design (port map): VHDL for FPGA Tutorial – Unit 4 slides.

▪ Testbench generation: Refer to VHDL for FPGAs Tutorial – Unit 5 slides for detailed explanation. Also, look at the

examples in Unit 6 and Unit 7 of this VHDL for FPGAs Tutorial.

▪ Use of generic components: These components are ubiquitous in digital system design: counters, registers, shift registers.

To optimize design time, we recommend using parameterized components (VHDL for FPGAs Tutorial – Unit 5 examples):

✓ n-bit register with enable and synchronous clear: my_rege

✓ Counter modulo-N with enable and synchronous clear: my_genpulse_sclr

✓ n-bit parallel access (right/left) register with enable and synchronous clear: my_pashiftreg_sclr

Q1Q0(t+1) x w z

0 0 0 0 1

1 0 1 1 0

0 1 1 0 0

X X X X X

1 0 0 0 0

0 0 1 0 0

1 0 0 0 0

X X X X X

0 1 0 0 0

1 0 0 1 0

0 1 1 0 0

X X X X X

0 1 0 0 0

0 0 0 0 0

1 0 0 0 0

X X X X X

r p Q1Q0(t)

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

PRESENT

r p STATE

0 0 S1

0 0 S2

0 0 S3

0 1 S1

0 1 S2

0 1 S3

1 0 S1

1 0 S2

1 0 S3

1 1 S1

1 1 S2

1 1 S3

NEXT

STATE x w z

S1 0 0 1

S3 1 1 0

S2 1 0 0

S3 0 0 0

S1 1 0 0

S3 0 0 0

S2 0 0 0

S3 0 1 0

S2 1 0 0

S2 0 0 0

S1 0 0 0

S3 0 0 0

resetn

clk

z

D Q Q1

D Q Q0

p

r

w

x

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%206.pdf
https://youtu.be/UheK5V_mGLQ
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%204.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%205.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

4 Instructor: Daniel Llamocca

Usually, we want to use these components with different variations: bit-width, direction (shift registers), modulus (counters).

To properly use parametric components, refer to VHDL for FPGAs Tutorial – Unit 7 slides (generic map).

▪ Digital System Design: Refer to the following material:

✓ VHDL for FPGAs Tutorial – Unit 7 slides: Detailed step-by-step example (stopwatch design).

✓ VHDL for FPGAs Tutorial – Unit 7: VHDL code for a variety of digital systems (e.g.: bit-counting, sequential multiplier).

✓ Video: Bit-counting circuit (n = 8): step-by-step VHDL coding, synthesis and simulation in Vivado.

✓ Video: 4x4 Sequential Multiplier: step-by-step VHDL coding, synthesis and simulation in Vivado.
✓ Video: 2x2 Sequential Multiplier: VHDL coding, synthesis, simulation, implementation, and testing on ZYBO Board.

DESIGN EXAMPLES

BIT-COUNTING CIRCUIT (COUNTING 1’S) (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=8)

▪ This circuit counts the number of bits in register A whose value is ‘1’. Example (n=8): A = 00110111 → C = 0101.

▪ The sequential algorithm (pseudo-code) is shown. Here, we can follow this procedure to design a digital system:
✓ Sketch the block diagram: We need start and done signals to indicate when the process starts and finishes. We also

include input (Data for the Register A) and output data (Count).
✓ Sketch the high-level control mechanism (state machine) for the Bit-counting circuit. Here, you can include combinational

blocks as well as common synchronous blocks (registers, shift registers, counters).
✓ With the block diagram and high-level state machine, we can draft the components and their signals in the datapath.

From the high-level state machine, we can design the actual FSM that includes actual signals controlling the components.

DIGITAL SYSTEM (FSM + Datapath circuit)

A

din

s_l

E

0

LA

EA

Parallel Access
Right Shift (MSB to LSB)
s_l = 1 → Load

s_l = 0 → Shift

DA

z a0

Q

counter: m bits

E

sclr

EC

FINITE STATE
MACHINE

resetn S1

S2

resetn=0

1

0
s

z

EC, sclrC  1

01

EC  1

1

0

EA  1

a0

S3

done  1

1
s

0

C

done

 = +1

sclrC
EA, LA  1 Shift-Right

DATAPATH CIRCUIT

s

LA EA

C  0

while A  0

if a0 = 1 then

C  C + 1

end if

right shift A

end while

S1

S2

Reset

1

0
s

C  0

noy es

C  C+1

1

0

Shif t right A

a0

S3

done

1
s

0

Load A

A=0?

Sequential Algorithm

High-level FSM

Bit-counting
circuit

s

done

C

DA

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%207.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%207.pdf
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
https://youtu.be/SrC_klgpcb8
https://youtu.be/Hr3M9ePgCSg
https://youtu.be/w4uFQdo6Ui8
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/bit_counting.zip
https://youtu.be/SrC_klgpcb8

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

5 Instructor: Daniel Llamocca

▪ Components: Behavior on the clock tick.

m-bit counter (modulo-n+1): If E=0, the count stays. n-bit Parallel access shift register: If E=0, the output is kept.
if E = 1 then

 if sclr = 1 then

 Q  0

 else

 Q  Q+1

 end if;

end if;

if E = 1 then

 if s_l = ‘1’ then

 Q  D

 else

 Q  shift in ‘din’ (to the right)
 end if;

end if;

▪ Timing diagram (n=8, m=4):

✓ Examples shown in figure:

 If 𝐴 = 00110110, then 𝐶 = 0100.

 If 𝐴 = 00001110, then 𝐶 = 0011.

✓ Video: Bit-counting circuit (n=8): Completing timing diagrams (For DA=10110110 and 00000011)

✓ To complete timing diagrams for digital systems, the following procedure can be followed:
For every clock cycle:

a. Complete the registered signals (i.e.: A, state, C). These signals are kept constant during a clock cycle.

b. Complete the signals that are not outputs of the FSM, but that are inputs of the FSM (z).

c. Complete the FSM outputs. Note they might change at any moment during the clock cycle.
d. For the next clock cycle, go to ‘a.’

clock

resetn

s

DA 0000111000110110

S1 S1 S2 S2 S2 S2 S2 S2 S2 S3 S1 S2 S2 S2 S2 S2 S3

A

z

3600 00 1B 0D 06 03 01

state

C

done

EA

LA

sclrC

EC

00 0E 07 03 0100 00 00 00

00000000 0000 0000 0001 0010 0010 0011 0100 0000 0000 0001 00100100 0100 0011 0011

https://youtu.be/hRgv3ZkLJD4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

6 Instructor: Daniel Llamocca

EXAMPLE: 7-SEGMENT SERIALIZER (VHDL code)

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Most FPGA Development boards have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.
▪ If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the

7-segment displays.
▪ Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs. In order for each digit

to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-illuminated for
3 ms and illuminated for 1 ms). This is taken care of by feeding the output 𝑧 of the ‘counter to 0.001s’ to the enable input

of the FSM. This way, state transitions only occur each 0.001 s.
▪ In the figure, the enable signals for the four 7-segment displays are active low (this is usually the case).

▪ Component: Behavior on the clock tick.

0.001 s counter (modulo-105): Free running counter
if Q = 105 - 1 then

 Q  0

 else

 Q  Q+1

 end if;

end if;

* z = 1 if Q = 105-1

▪ Algorithmic State Machine (ASM) chart: This is a Moore-type FSM.

1

S1

resetn=0

s  00

s  01

S2

s  10

S3

s  11

S4

E

E

E

E

1

1

1

0

0

0

0

4

4

4

4

0

1

2

3

2

HEX to 7
segments

decoder

2-to-4
decoder

4

A

B

C

D

s

7

buf buf(3) buf(2) buf(1) buf(0)

FINITE STATE MACHINE

resetn

Counter

(0.001s)

z

E

4

DATAPATH CIRCUIT

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/serializer.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

7 Instructor: Daniel Llamocca

EXAMPLE: SEQUENTIAL MULTIPLIER (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=4)

UNSIGNED MULTIPLICATION: SEQUENTIAL ALGORITHM

P  0, Load A,B

while B  0
 if b0 = 1 then

 P  P + A

 end if

 left shift A

 right shift B

end while

Example:

P  0, A  1111, B  1101

b0=1  P  P + A = 1111. A  11110, B  110

b0=0  P  P = 1111. A  111100, B  11

b0=1  P  P + A = 1111 + 111100 = 1001011. A  1111000, B  1

b0=1  P  P + A = 1001011 + 1111000 = 11000011. A  11110000, B  0

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Iterative Multiplier Architecture. Register P: 𝑠𝑐𝑙𝑟: synchronous clear. Here, if 𝐸 = 𝑠𝑐𝑙𝑟 = 1, the register contents are

initialized to 0. Parallel Access Shift Registers A and B: If 𝐸 = 1: 𝑠_𝑙 = 1 → Load, 𝑠_𝑙 = 0 → Shift. The result is computed in

at most + 1 cycles.

▪ Algorithmic State Machine (ASM) chart:

1 1 1 1 x

1 1 0 1

1 1 1 1

0 0 0 0

1 1 1 1

1 1 1 1

1 1 0 0 0 0 1 1

P  0 + 1111

P  1111

P  1111 + 111100 = 1001011

P  1001011 + 1111000 = 11000011

A

din

s_l

E

0

L

E

resetn

B

din

s_l

E

DataB

z b0

+

P
E

sclr

EP

sclrP

FSM

s

done

s
c
l
r
P

z

b0

E
P

Shift-rightShift-left

DataA 00..0

"00..0"&DataA

P

E L

0

L

E

DATAPATH CIRCUIT

S1

S2

resetn=0

1

0
s

z

sclrP  1

EP  1

E  1

01

EP  1

1

0
b0

S3

done  1

1
s

0

L, E  1

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/serial_mult.zip
https://youtu.be/Hr3M9ePgCSg

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

8 Instructor: Daniel Llamocca

▪ Components: Behavior on the clock tick:

2n-bit register: If E=0, the output is kept.
Parallel access shift register: If E=0, the output is kept.

A (2n bits, left shift), B (n bits, right shift)
if E = 1 then

 if sclr = 1 then

 Q  0

 else

 Q  D

 end if;

end if;

if E = 1 then

 if s_l = ‘1’ then

 Q  D

 else

 Q  shift in ‘din’ (to the left(A) or right(B))
 end if;

end if;

▪ Timing Diagram: n = 4.

clock

resetn

s

DB 11011111

DA 11111111

S1 S1 S2 S2 S2 S2 S2 S3 S1 S1 S2 S2 S2 S2 S2 S3 S1

B

A 0F

z

0000 1E 3C 78 F0 E0

11110000 0000 0111 0011 0001 0000 0000

state

000000 0F 2D 69 E1P

done

L

E

E1

sclrP

EP

1101 0110 0011 0001 0000

0F 1E 3C 78 F0 E0

00 00 0F 0F 4B C3 C3 C3E1

0000 0000 0000 0000

E0 E0 E0

	Components: FSM (Control) + Datapath Circuit
	Finite State Machines (FSMs)
	Datapath Circuit

	Digital System Design
	VHDL Coding

	Design Examples
	Bit-Counting circuit (Counting 1’s) (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=8)
	Example: 7-segment Serializer (VHDL code)
	Example: Sequential Multiplier (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=4)

